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Abstract
We consider the one-dimensional classical Ising model in a symmetric
dichotomous random field. The problem is reduced to a random iterated
function system (RIFS) for an effective field. TheDq-spectrum of the invariant
measure of this effective field exhibits a sharp drop of all Dq with q < 0 at
some critical strength of the random field. We introduce the concept of orbits,
which naturally group the points of the support of the invariant measure. We
then show that the pointwise dimension at all points of an orbit has the same
value and calculate it for a class of periodic orbits and their so-called offshoots
as well as for generic orbits in the non-overlapping case. The sharp drop in
the Dq-spectrum is analytically explained by a drastic change of the scaling
properties of the measure near the points of a certain periodic orbit at a critical
strength of the random field, which is explicitly given. A similar drastic change
near the points of a special family of periodic orbits explains a second, hitherto
unnoticed transition in the Dq-spectrum. As it turns out, a decisive role in
this mechanism is played by a specific offshoot. We furthermore give rigorous
upper and/or lower bounds on all Dq in a wide parameter range. In most cases
the numerically obtainedDq coincide with either the upper or the lower bound.
The results in this paper are relevant for the understanding of RIFSs in the case
of moderate overlap, in which periodic orbits with weak singularity can play a
decisive role.

PACS numbers: 0545D, 0550, 0570F, 7510N

1. Introduction

The properties of multifractal measures have attracted much interest over the past two decades.
Multifractals naturally appear in a variety of physical and mathematical contexts. From
the beginning the one-dimensional random field [1–17] and random exchange [18–20] Ising
models were prominent examples. In treating these systems some reduction scheme for the
partition function such as the transfer matrix method [1, 2, 17, 18] or a method introduced by
Ruján [9] is usually used [4–15] to obtain a random iterated function system (RIFS) for a
local effective field. This leads via a Frobenius–Perron or Chapman–Kolmogorov equation
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to an invariant measure, which typically is a multifractal. Similar structures arise in other
one-dimensional disordered systems such as phonons [21] or electrons [22, 23] in random
potentials (cf also [24]).

In the early investigations of the random field Ising model (RFIM) the language of
multifractals had not yet been developed and the results focused apart from calculating the
free energy on the structure of the support of the invariant measure [1–8] and the ground state
properties of the system [5, 6, 8, 12, 18]. More recently the uniqueness of Gibbs measures
and exact ground state properties were investigated [16]. A connection to domain theory was
established in [25].

The invariant measure of the local effective field in the RFIM is a multifractal [8]. In
various works the generalized box dimensions (generalized Rényi dimensions)Dq [26] of this
measure were calculated for special q [4, 10], with perturbation expansions [7, 10, 11, 27] or
numerical approximations [10, 13, 27]. Other authors focused on different concepts such as
the order-q free energy and its fluctuations [19, 20] or correlation functions [17].

The systematic numerical investigation of the dependence of Dq on the strength of the
local random fields [13] revealed the surprising feature of discontinuities (phase transitions)
in the Dq with negative q.

Almost all features of the Dq-spectrum have by now been understood analytically. The
most drastic transition in the Dq-spectrum, the sharp drop of all generalized dimensions Dq

with q < 0 at some critical field strength h(2)c , also present in the context of a special model of
neural networks [28,29], was explained on a phenomenological level by the disappearance of
deep cuts in the measure density at h � h

(2)
c [14, 29]. This disappearance of deep cuts in the

measure density can be explained analytically by close investigation of the obtained nonlinear
RIFS.

In this paper we complete the analysis of the transition begun in [15, 30] and explicitly
calculate the critical field strength h(2)c of the transition. The result is obtained by generalizing
the analysis of the singularity (pointwise dimension) at fixed points to the singularity of orbits.
Further application to a special family of periodic orbits explains a so far unnoticed smaller
drop in theDq-spectrum at a critical field strength h(2a)c , which became observable because of
increased precision in the numerical generation of theDq-spectrum. Furthermore, the concept
of orbits and their singularity also allows us to give bounds onDq for any q and the exact value
of D±∞ in a wide parameter region of the random field strength h. The computation of D±∞
generalizes earlier results in [10].

Similar approaches and arguments may be found in the mathematical literature. In [31]
parabolic function systems with overlaps are considered, [32] concentrates on measures
obtained by infinite Bernoulli convolutions and [33] investigates generalized dimensions Dq

of measures on general self-affine sets.
In the following we consider the one-dimensional RFIM [1–17] with the Hamiltonian

HN = −J
N−1∑
i=1

sisi+1 −
N∑
i=1

hisi (1)

in which si denotes the classical spin at site i, which takes values 1 or −1, and J is the
exchange energy of adjacent spins. The local magnetic fields {hi} at the sites i = 1, . . . , N are
independent identically distributed random variables. We restrict ourselves to dichotomous
symmetric distributions, i.e. to probability densities with Dirac masses at ±h,

ρ(hi) = 1
2δ(hi − h) + 1

2δ(hi + h) h ∈ R
+. (2)

An iterative reformulation of the canonical partition function yields the partition function of a
single spin in an effective external random field x(N)1 (the effective field at site 1 in a chain of
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Figure 1. (a) Mapping in the case of overlapping bands I+ = f+(I ) and I− = f−(I ). In (b) the
first few images of the interval I are shown. The increasing complexity of the band structure is
obvious (h = 0.55, β = 1, J = 1).

N spins), which is given by an iterative map [4],

x
(N)
i = hi + A(x(N)i+1 ) x

(N)
N+1 = 0

A(x) = 1

2β
ln

(
cosh β(x + J )

cosh β(x − J )

) (3)

whereβ denotes the inverse temperature1. The iteration is illustrated in figure 1. As a shorthand
we introduce

fσ (x) := σh + A(x) σ ∈ {+,−} (4)

such that the recursion (3) reads x(N)i = fσi (x
(N)
i+1 ) with hi =: σih. By the reformulation of the

canonical partition function we are thus led to an RIFS with smooth, strictly monotonically
growing, contractive functions {f+, f−} = {A+h,A−h} and probabilities {p+, p−} = { 1

2 ,
1
2 }.

When viewing (3) as an RIFS we will also write xn instead of x(N)i for the value of the
effective field after n = N − i + 1 iterations. Please note that the transition from N to N + 1
spins implies prepending functions to the composition of functions, i.e. we need to consider
xn = fσ1 ◦ · · · ◦ fσn(x), xn+1 = fσ1 ◦ · · · ◦ fσn ◦ fσn+1(x) etc.

We introduce a symbolic dynamic in the obvious way: let�n be the set of finite sequences
{σ }n of n symbols σi ∈ {+,−}, i = 1, . . . , n and �∞ the set of all infinite sequences {σ }.
Given {σ } we will write {σ }n for the head of the n leftmost symbols in {σ }. By f{σ }n we denote
the composition of the n functions fσi , i = 1, . . . , n, i.e. f{σ }n = fσ1 ◦ fσ2 ◦ · · · ◦ fσn . The
above-mentioned properties of f+ and f− imply the following facts.

• The fixed points x∗
+ and x∗

− with f+(x
∗
+) = x∗

+ and f−(x∗
−) = x∗

− exist.
• The interval I = [x∗

−, x
∗
+] is the smallest interval with fσ (I ) ⊆ I .

• The limit limn→∞ f{σ }n (x0) exists for any {σ } ∈ �∞ and x0 ∈ I and does not depend on
x0. We thus can define x∗

{σ } := limn→∞ f{σ }n (x0) and the (constant) function f{σ } : I → I ,
f{σ }(x) := x∗

{σ }. Through this definition x∗
{σ } is the unique fixed point of f{σ }.

• We denote the fixed points of finite compositions f{σ }n by x∗
{σ }n . If {σ } is periodic with

period n then x∗
{σ } = x∗

{σ }n .

1 Note that we find it convenient to use a slightly different notation than in previous work, e.g. [6, 8, 15].
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• We name the n-fold images I{σ }n := f{σ }n (I ) of the invariant interval I bands (of order
n). For given {σ } they have the inclusion property I{σ }n ⊂ I{σ }m for n > m. Furthermore,
the construction implies x∗

{σ } ∈ I{σ }n for all n.
• If the first-order bands I+ and I− do not overlap, I+ ∩ I− = ∅, none of the higher-order

bands overlap, I{σ }n ∩ I{σ̃ }n = ∅. We call this the non-overlapping case and denote the
first-order gap by � := [f−(x∗

+), f+(x
∗
−)]. The inverse statement is also true. If the first-

order bands overlap the corresponding higher-order bands also overlap. This situation is
illustrated in figure 1. We denote the first-order overlap by O := I+ ∩ I−.

The RIFS (2), (3) induces a probability density pn for the effective field xn. We write
Pn(x) := ∫ x

0 pn(ξ) dξ for the corresponding distribution function andµn for the corresponding
measure. Pn, pn andµn can iteratively be constructed using the Frobenius–Perron (Chapman–
Kolmogorov) equation induced by (3), which reads for Pn

Pn(x) =
∫

dh ρ(h)Pn−1(A
−1(x − h)) =

∑
σ=±

1
2Pn−1(f

−1
σ (x)) (5)

with P0(x) = !(x), ! being the Heaviside function. This choice of P0 encodes the free
boundary conditions chosen in (3). Again the properties of f+ and f− imply some direct
consequences.

• The Frobenius–Perron equation has a unique fixed point P∞ (µ∞) [5,34] and the invariant
measure µ∞ is ergodic.

• The reiterated application of the Frobenius–Perron equation to an arbitrary initial measure
µ0 (distribution P0) converges to µ∞ (P∞) in Hutchinson topology or, as I is compact,
equivalently in the weak topology of measures [34]. Thus, µ∞ (P∞) is the measure
(distribution) of the effective field x in the thermodynamic limitN → ∞ for any boundary
condition.

• The explicit form of the nth iterate Pn(x) reads

Pn(x) =
∑
{σ }n

1

2n
P0(f

−1
{σ }n (x)) (6)

which is in the limit n → ∞ a path integral in the space of symbolic dynamics. In the
non-overlapping case the sum on the right-hand side of (6) has only one term for each x.
In the overlapping case typically more than one term contributes for each x. There are
however x ∈ suppµ∞ for which still only one term contributes.

• The support suppµ∞ ⊆ I is the attractor of the RIFS {f+, f−} [34].
• For any x ∈ suppµ∞ one can find a sequence {σ } with x = x∗

{σ }. In the non-overlapping
case this relation between �∞ and suppµ∞ is one to one.

In the following we closely investigate the multifractal properties of the invariant measureµ∞.
To this end we study the generalized box counting dimensions

Dq = 1

q − 1
lim
ε→0

ln(
∑

i µ
q

i )

ln ε
(7)

whereµi = µ∞(Bε(xi)) are the measures of boxes (intervals) of size ε covering suppµ∞, and
the pointwise dimension

Dp(x) = lim
ε→0

lnµ∞(Bε(x))
ln ε

(8)

at individual points x ∈ suppµ∞. We will synonymously use the singularity α := Dp − 1.
The intricate interplay between these quantities will explain the transitions in theDq-spectrum
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mentioned above. The obtained characterization of µ∞, the measure of the effective field x,
is a prerequisite for the more complicated treatment of the distribution of physical quantities
such as the local magnetization which will follow in a later publication.

The paper is organized as follows. In section 1.1 we briefly review the known results
about prominent features of the Dq-spectrum. In section 2 the concept of orbits and their
singularity is introduced and in 2.1 this singularity is calculated for a class of periodic orbits
and their so-called offshoots. In section 2.2 we calculate the generic singularity of arbitrary
orbits in the non-overlapping case. In section 2.3 we treat the overlapping case and discuss
effects occurring if points of an orbit enter the overlap. The results are used to explain the
transition in the Dq-spectrum at h(2)c and calculate h(2)c as a function of temperature T and
coupling strength J explicitly. We then apply a similar analysis to the transition at h(2a)c in
section 2.4. In section 3 we give the extended lower and upper bounds on the Dq-spectrum
obtained from the analysis of the singularity of specific orbits. Finally, some conclusions are
drawn in section 4.

1.1. Known results

In this section we summarize briefly previous work on phase transitions in the invariant measure
µ∞. For large h the support of µ∞ is non-connected and similar to a multiscale Cantor set [8].

At a critical value h(1)c of h the support of µ∞ becomes connected for all h � h
(1)
c [2].

The value of h(1)c is determined by the overlap condition for the first bands, f−(x∗
+) = f+(x

∗
−).

This results in [13]

h(1)c = 1

2β
arcosh((e2βJ − 1)/2). (9)

The transition can be seen in the densitiespn of the approximationsµn of the invariant measure
µ∞ [13]. In theDq-spectrum the transition is visible as the point whereD0 becomes unity (cf
figure 2).

At h(3)c � h
(1)
c the invariant measure density jumps from infinity to zero at the boundary

x∗
+ and x∗

− of I [13]. This is an effect solely depending on the scaling of the measure at the
fixed points x∗

− and x∗
+. The measure density pn(x∗

±) diverges for f ′
±(x

∗
±) <

1
2 and converges

to zero for f ′
±(x

∗
±) >

1
2 , leading to the critical value [13]

h(3)c = 1

β
arsinh(2− 3

2 (1 − 9e−4βJ )
1
2 ). (10)

The transition is again visible in numerically generated pn [13] as well as in the Dq-spectrum
as the value of h for which D−∞ begins to grow again for decreasing h (cf figure 2). As was
shown in [29], the generalized fractal dimension D−∞ has the value D−∞ = 1 at this point
and D−∞ > 1 for h < h

(3)
c .

The last of the transitions which are already well understood occurs at h(4)c � h
(3)
c when

the slope of the coarse-grained invariant measure density at x∗
± jumps from ∓∞ to 0. The

condition for this is f ′
σ (x

∗
σ ) = 2−1/2 [14], resulting in [13]

h(4)c = 1

β
arsinh

(
3 · 2− 5

2 − 1

2
−
(

3 · 2− 5
2 +

1

2

)
e−4βJ

)1
2

. (11)

The transition is visible in numerically generated densities pn [13] but not in theDq-spectrum
(cf figure 2). Again, D−∞ can be calculated analytically and takes the value D−∞ = 2. In
fact, D−∞ can be calculated analytically for all h < h

(3)
c by considering that the scaling at

the boundary is weaker in this case than at any other point [10]. This gives lower and upper
bounds on Dq which for q → −∞ converge to a common limit (see section 3).
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Figure 2. Generalized fractal dimensions Dq of the invariant measure of the local effective field
with q = −20, −6, −3, −2, −1, 0, 1, 2, 4, 20 versus the amplitude of the local random field
h (β = 1, J = 1). The results were computed in the thermodynamic formalism using the new
natural partition introduced by Behn and Lange [13]. The significance of the critical values h(n)c ,
n = 1, . . . , 4, and h(2a)c is explained in the text. The solid and dashed curves are exact lower
and upper bounds on Dq respectively, which are obtained in section 3, except for the solid curve

coinciding with the values of D1 for h > h
(1)
c , which was obtained from (30).

Please note that the effects summarized in this section only depend on the measure at the
boundary of its support and therefore are not strictly multifractal effects.

2. Orbits and their contribution to the invariant measure

The orbit to a given symbolic sequence {σ } consists of all preimages f −1
{σ }n (x

∗
{σ }), n ∈ N0. In

the case of a periodic sequence {σ } = ({σ }n)∞ with finite period n, the orbit consists of the
fixed points of the n functions fπ{σ }n in which π denotes a cyclic permutation. To denote
periodic orbits we will write for simplicity {σ }n instead of ({σ }n)∞ The fixed points x∗

{σ }n of
the periodic orbits are dense in the support of µ∞ [34]. Furthermore, any point of the support
of µ∞ is contained in at least countably infinitely many orbits.

2.1. Singularity of periodic orbits

For the case of the fixed points x∗
± of f± it has been shown before that their singularity can

be calculated explicitly [14,15]. Fixed points are one-orbits and we generalize this concept to
periodic orbits of arbitrary period length.

Let yi := f −1
σi

◦ f −1
σi−1

◦ · · · ◦ f −1
σ1
(x∗

{σ }n ), i = 1, . . . , n, be the points of the periodic n-orbit
defined by {σ }n. We then have yn = y0 = x∗

{σ }n because x∗
{σ }n is the fixed point of f{σ }n by

definition. An example for a periodic three-orbit is shown in figure 3.
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Figure 3. Orbits of period three for different values of h. (a) Shows the case where no point of
the orbit falls into the overlap region whereas in (b) the point x∗

{−++} is in the overlap region and
therefore has two predecessors (β = 1, J = 1).

When no overlap exists or (if it exists) when no point yi is in the overlap, the predecessor
of each yi with respect to the iteration of the Frobenius–Perron equation is uniquely determined
to be yi−1. There is therefore only one term in the Frobenius–Perron equation at all yi . We
now investigate the singularity (pointwise dimension) of µ∞ at x∗

{σ }n . We assume2 that the
scaling limit

lim
ε→0

P∞(x∗
{σ }n + ε

2 )− P∞(x∗
{σ }n − ε

2 )

εα{σ }n+1
=: k (12)

exists for some finite k �= 0 and some α{σ }n ∈ R. As shown in appendix A.1 this implies

lim
ε→0

P∞(f −1
{σ }n (x

∗
{σ }n + ε

2 ))− P(f −1
{σ }n (x

∗
{σ }n − ε

2 ))

((f −1
{σ }n )

′(x∗
{σ }n )ε)

α{σ }n+1
= k. (13)

The n-fold iteration of the Frobenius–Perron equation yields

P∞
(
x∗

{σ }n +
ε

2

)
− P∞

(
x∗

{σ }n − ε

2

)
= 1

2n

(
P∞

(
f −1

{σ }n
(
x∗

{σ }n +
ε

2

))
− P∞

(
f −1

{σ }n
(
x∗

{σ }n − ε

2

)))
. (14)

We denote the expression on the left-hand side byX and the one on the right-hand side by Y/2n

and thus have X/Y = 1/2n. Inserting 1 = k/k and using (12) and (13) with the introduced
notation X and Y we obtain

lim
ε→0

(
X

Y
· Y/((f

−1
{σ }n )

′(x∗
{σ }n )ε)

α{σ }n+1

X/εα{σ }n+1

)
= 1

2n
. (15)

Most terms immediately cancel and we obtain

((f −1
{σ }n )

′(x∗
{σ }n ))

α{σ }n+1 = 2n. (16)

Therefore

α{σ }n + 1 = n ln 2

ln((f −1
{σ }n )

′(x∗
{σ }n ))

(17)

2 This assumption of strong scaling can be lifted in the non-overlapping case in which a generalization of (19) to
arbitrary orbits can be proven provided the pointwise dimension of the fixed point exists (cf section 2.2).
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Table 1. Illustration of the terminology of symbolic sequences and the different roles played by
head and tail.

Head (finite) Tail (infinite)

Generic
+ − + + + − − + − + − + + + − − + − + + − − − + · · ·
{σ }n {σ̃ }

Periodic (here period 3)
− + + − + + − + + − + + − + + − + + − + + − + + · · ·
{σ }9 = (− + +)3 (− + +)∞

Offshoot (arbitrary head, periodic tail)
+ − + + − − − + + − + + − + + − + + − + + − + + · · ·
{σ }n (− + +)∞

Head determines the Tail determines scaling at x∗
{σ }

interval I{σ }n � x∗
{σ }

and with (f −1
{σ }n )

′(x∗
{σ }n ) = (f ′

{σ }n (f
−1
{σ }n (x

∗
{σ }n )))

−1 = (f ′
{σ }n (x

∗
{σ }n ))

−1 we obtain

α{σ }n = −1 − n ln 2

ln(f ′
{σ }n (x

∗
{σ }n ))

. (18)

This equation is invariant under cyclic permutation of {σ }n such that the scaling behaviour of
the invariant measure at all yi , i = 1, . . . , n, is given by the same Hölder exponent α{σ }n . In
other words, any point of the orbit has the same pointwise dimension Dp = α{σ }n − 1. We
therefore call α{σ }n the singularity of the orbit {σ }n. If α{σ }n < 0 the measure has a positive
(i.e. strong) singularity at all yi and if α{σ }n > 0 the singularity is negative (i.e. weak).

As f ′
{σ }n (x

∗
{σ }n ) = ∏n

i=1 f
′
σi
(yi−1), the derivatives f ′

σi
(yi−1) = A′(yi−1) at the points yi−1

of the periodic orbit determine the singularity α{σ }n and we finally have

α{σ }n = −1 − n ln 2∑n
i=1 lnA′(yi)

. (19)

A short calculation using the Frobenius–Perron equation (5) shows that the singularities of
arbitrary points x and fσ (x) are the same provided fσ (x) is not in the overlap (cf appendix A.2).
The argument can be iterated such that the measure has the same singularity at any x and all its
images f{σ̃ }m(x) for any {σ̃ } for which no point f{σ̃ }i (x), i = 1, . . . , m, is in O. Therefore not
only are the singularities at all points of a periodic orbit the same but also the singularities at
all points of non-periodic orbits where the orbit also does not touch the overlap O. For orbits
of the form {σ̃ }m({σ }n)∞ we know that this singularity is the singularity of {σ }n, the periodic
tail. We call non-periodic orbits of this type offshoots of the corresponding periodic orbit. The
roles played by the head and the tail of a symbolic sequence {σ } are summarized in table 1.
Note that the choice of the length of the head is arbitrary, in a sense. Similar structures have
been considered in [23].

2.2. Singularity of generic orbits in the non-overlapping case

In the last section we saw the fact that if the predecessor of each point of an orbit is unique we
can explicitly calculate the singularity of the orbit as a function of the derivative of A at the
points of the orbit. In the non-overlapping case, O = ∅, the uniqueness of predecessors holds
for any point in suppµ∞. It is therefore natural to try to extend (19) to generic non-periodic
orbits.
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As a first step it is not difficult to show that if

lim
n→∞

1

n

n∑
i=1

lnA′(x(n)i ) (20)

exists for one choice of x(n)i ∈ I{σ }i for a given {σ }, then it exists for any such choice and is
independent of the particular choice made (cf appendix B).

Let x ∈ suppµ∞ be such that (20) exists for the corresponding symbolic sequence
{σ }. To calculate the limit ε → 0 in (8) it is sufficient to consider εn := |I{σ }n | as
εn+1
εn

� min{A′(x)|x ∈ I } = A′(x∗
+) > 0 holds. We know from the general properties

that x = x∗
{σ } ∈ I{σ }n for all n ∈ N. Because of the choice of εn we have Bεn(x) ⊃ I{σ }n such

that µ∞(Bεn) � µ∞(I{σ }n ) = 1
2n leading to

lnµ∞(Bεn)
ln εn

� −n ln 2

ln εn
. (21)

On the other hand we also can choose ε′
n := |f{σ }n (�)|. The interval I{σ }n is neighboured by

two gaps. One of the neighbouring gaps is always f{σ }n−1(�); the other is either f{σ }m(�)
with m < n − 1 or it is the complement of I . By contractivity of the RIFS we have
|f{σ }m(�)| > |f{σ }n (�)| for m < n, such that in either case the smallest gap neighbouring
I{σ }n is f{σ }n−1(�). This implies µ∞(Bε′

n
) � µ∞(I{σ }n ) = 1

2n because Bε′
n

cannot bridge any of
the neighbouring gaps and thus only intersects I{σ }n . Therefore,

lnµ∞(Bε′
n
)

ln ε′
n

� −n ln 2

ln ε′
n

. (22)

Using the mean-value theorem for f{σ }n we obtain

εn = |I{σ }n | = f{σ }n (x
∗
+)− f{σ }n (x

∗
−) (23)

= (f{σ }n )
′(x(n)0 ) (x∗

+ − x∗
−) =

n−1∏
i=0

A′(f{σ }i (x
(n)
0 )) |I | (24)

for some x(n)0 ∈ I . In the same fashion we obtain

ε′
n =

n−1∏
i=0

A′(f{σ }i (x
′
0
(n)
)) |�| (25)

for some other x ′
0
(n) ∈ I . Taking (21) and (24) we obtain

lim sup
n→∞

lnµ∞(Bεn)
ln εn

� lim sup
n→∞

− ln 2
1
n

∑n−1
i=0 lnA′(f{σ }i (x

(n)
0 )) + 1

n
ln |I |

(26)

= lim
n→∞

−n ln 2∑n
i=1 lnA′(f −1

{σ }i (x
∗
{σ }))

(27)

while using (22) and (25) yields

lim inf
n→∞

lnµ∞(Bε′
n
)

ln ε′
n

� lim inf
n→∞

− ln 2
1
n

∑n−1
i=0 lnA′(f{σ }i (x

′
0
(n)
)) + 1

n
ln |�| (28)

= lim
n→∞

−n ln 2∑n
i=1 lnA′(f −1

{σ }i (x
∗
{σ }))

. (29)

In both (27) and (29) the existence of the limit in (20) and the independence of (20) of the
points x(n)i ∈ I{σ }i was used to replace lim inf and lim sup by lim and to substitute the points
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of the orbit {σ } for x(n)0 and x ′
0
(n) respectively. From (27) and (29) we immediately obtain that

Dp exists and is given by

Dp = lim
n→∞

−n ln 2∑n
i=1 lnA′(f −1

{σ }i (x
∗
{σ }))

. (30)

Elton’s ergodic theorem [35] implies that our assumption of the existence of (20) holds for
almost all {σ } which corresponds to µ∞-almost sure existence of the pointwise dimension
Dp(x). Elton’s theorem together with (30) further implies that for µ∞-almost all x the
pointwise dimension takes the common value

Dp(x)
µ∞-a.s.= − ln 2∫

(lnA′(ξ))µ∞(dξ)
=: Dp. (31)

This result has direct consequences for the information dimensionD1. Proposition 2.1 in [36]
implies that

DH({x ∈ I : Dp(x) = Dp}) = Dp (32)

in which DH denotes the Hausdorff dimension. General properties of the multifractal f (α)-
spectrum imply thatα1 is the only fixed point off (α) and thatα1 = D1 (cf [37]). Therefore (32)
implies D1 = Dp. This fact is illustrated by the solid curve in figure 2 coinciding with the
numerically obtained values ofD1 for h > h

(1)
c which was obtained through calculation of (31)

using Edalat’s R-integration [38]. (It also is a simple exercise to check on a computer that,
using the first 105 digits of the dual representation of π or e as a symbolic sequence, the value
of α obtained from (30) is also exactly the value D1 − 1 in figure 2. Of course, the use of a
random number generator instead of π or e yields the same result with unit probability.)

Please note that the restriction to almost all {σ } in the above is necessary as the sum in (20)
does not converge for all {σ }. A simple example in which it does not converge is a sequence of
bulks of plus and minus signs of ever-increasing length. The length of the bulks can be chosen
such that the sum in (20) keeps oscillating for any size of n.

2.3. Singularity of orbits in the overlapping case

In the previous sections the condition that no point of the orbits under consideration is in the
overlap O was essential for the calculation of their singularity. In this section we investigate
how the singularity of orbits is affected by the overlap O. Tuning the parameter h changes O
as well as the location of the orbits. If (at least) one point x of a periodic orbit is in O this
point has two predecessors and there are two terms in the Frobenius–Perron equation (5) at
this x. The two terms contribute singularities α1 and α2, i.e. µ1 := µ∞(Bε(f −1

− (x))) ∼ εα1

and µ2 := µ∞(Bε(f −1
+ (x))) ∼ εα2 . Therefore, the singularity at x will be inf{α1, α2}, since

µ∞(Bε(x)) ∼ µ1 + µ2 ∼ εinf{α1,α2}. The mechanism is illustrated in figure 4 using the
example of an orbit which will be important in the next section. Where the original singularity
is stronger than or equal to the additionally contributed one, there are no consequences. Where
the singularity is rather weak though, a weak singularity is replaced by a stronger singularity.
In fact, the new singularity at the maximal value of h for which x is inO is always rather strong
as it stems from x∗

± where A′ is small. The change in the singularity may have a major impact
on the Dq-spectrum especially if some or all of the weak but somewhat stronger singularities
have already vanished.

A special role in the mechanism described above is played by the one-orbits {+} and {−},
because they never touch O, and the two-orbit {+−}. At moderate overlap (small |O|) we
have the situation illustrated in figure 5. Since x∗

{+−} is mapped to x∗
{−+} and vice versa and

because fσ is monotonic, all points to the right of x∗
{+−} are mapped to the right of x∗

{−+} and
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Figure 4. This figure illustrates the intricate structure of orbits and how weak singularities are
superseded by stronger ones. The pointx = x∗

{+−−(+−)∞} is in the overlap atβ = 1, J = 1,h = 0.74

(h(2)c < h < h
(2a)
c ). In this figure x, all its predecessors up to sixfold application of f−1

± and all its
successors up to twofold application of f± are shown. The points are the predecessors/successors
and the connecting lines illustrate which point is mapped onto which. Note that the backward
trajectory of x branches each time a point is in the overlap whereas the predecessor is unique if
the overlap is not touched. The dashed line connects points of the orbit {+ − −(+−)∞} which is
an offshoot of the {+−} orbit and therefore has the singularity α{+−} ≈ 0.982. The solid curves
connect points of two other orbits which meet at y ∈ O, both carrying the generic singularity
α = Dp − 1 ≈ −0.057. At x the weaker singularity α{+−} is superseded by α. The offshoots
emerging from x all have the stronger singularity α.

x
�
� x

�
f�+g f+(x��) f�(x�+) x�f+�g x�+

f� f+

f+
f
�

Figure 5. Mapping of subintervals of I = [x∗−, x∗
+] under f+ and f− elucidating the importance

of the interval [x∗
{−+}, x

∗
{+−}]. The latter is mapped onto parts of the outer intervals [x∗−, x∗

{−+}]
and [x∗

{+−}, x
∗
+] under f− and f+ while these outer intervals are themselves preimages of parts of

[x∗
{−+}, x

∗
{+−}]. The points in the overlap [f+(x

∗−), f−(x∗
+)] have two predecessors, one stemming

from the left under f+ and one from the right under f− (all in the case of moderate overlap).

all points to the left of x∗
{−+} are mapped to points left of x∗

{+−}. Therefore, any periodic n-orbit
with n > 2 must have at least one point inside [x∗

{−+}, x
∗
{+−}]. Hence, the {+−} orbit is the last

periodic orbit to be reached by O.
The {+−} orbit and its offshoots carry a very weak singularity as the {+−} orbit always

stays in regions with comparably large A′ (cf equation (19)). For β and J in the vicinity of
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Figure 6. Collapse of the right-hand part of the f (α)-spectrum at h(2)c and h(2a)c . In (a) the spectra
at h = 0.493 85 > h

(2)
c (dashed curve) and h = 0.4938 < h

(2)
c (solid curve) are shown. In (b) the

spectra are at h = 0.8136 > h
(2a)
c (dashed curve) and h = 0.8128 < h

(2a)
c (solid curve). The

spectra were obtained by a numerical Legendre transform of the correspondingDq -spectra. These
were generated with the same algorithm as in figure 2 with a recursion depth of 21 (β = 1, J = 1).

β = J = 1 one can show that the orbit {+−} has even the weakest singularity of all periodic
orbits [30]. Because of its weak singularity and the fact that all other periodic orbits and
their offshoots are reached by O before x∗

{+−} is reached, the {+−} orbit and its offshoots
practically solely determine all Dq with q < 0 if h is such that O has nearly reached x∗

{+−}.
If O includes x∗

{+−}, i.e. f−(x∗
+) � x∗

{+−}, x
∗
{+−} has in addition to the preimage f −1

+ (x∗
{+−})

the preimage f −1
− (x∗

{+−}). (The same applies to x∗
{−+}, of course.) The additional preimages

contribute a stronger singularity than the original weak singularity of the {+−} orbit. Thus,
the weak singularity of the {+−} orbit and its offshoots is superseded and, as all other periodic
orbits have been reached by O before, all Dq with negative q have collapsed to Dq = 1 at
this point. The critical value h(2)c at which the collapse takes place is therefore given by the
condition

f−(x∗
+) = x∗

{+−}. (33)

So far we have only discussed periodic orbits and their offshoots. Other non-periodic
orbits do not play a major role because they generically have the rather strong singularity
α = Dp − 1 = D1 − 1 and also generically have points inside [x∗

{−+}, x
∗
{+−}] such that they are

reached by O before the {+−} orbit is reached.
After the collapse the right-hand part of the f (α)-spectrum of the invariant measure has

vanished since the weaker negative singularities have all been superseded by stronger ones
(cf figure 6(a)). A similar collapse of parts of the multifractal spectrum has previously been
observed in the superposition of equal-scale [39] and multiscale [40, 41] Cantor sets showing
that effects of this type appear in a wide variety of applications.

Let us now determine h(2)c explicitly. In a first step we need explicit expressions for
x∗

+ = −x∗
− and x∗

{+−} = −x∗
{−+}. The fixed point x∗

+ is defined by f+(x
∗
+) = x∗

+. With the
notation z = e2βx∗

+ this yields the equation

z2 − (e2βJ (e2βh − 1))z− e2βh = 0 (34)

with the solution

x∗
+ = 1

2β
ln
(
K +

√
K2 + e2βh

)
(35)



Orbits and phase transitions in the multifractal spectrum 13

0

0

0

0

0 0.5

0.5

0.5

1

1

1

1

1 1.5

1.5

1.5

2

2

2

2

33

��

JJ

h
(2)
c

Figure 7. Surface plot of the critical value h(2)c against β and J . The plot was obtained from (39).

where K = e2βJ (e2βh − 1)/2. To obtain x∗
{+−} we exploit x∗

{+−} = −x∗
{−+} = −f−(x∗

{+−}).
With z = e2βx∗

{+−} this yields

z2 + e−2βJ (e2βh − 1)z− e2βh = 0 (36)

and therefore

x∗
{+−} = 1

2β
ln
(
K̃ +

√
K̃2 + e2βh

)
(37)

with K̃ = e−2βJ (e2βh − 1)/2.
The equationf−(x∗

+) = x∗
{+−} is equivalent tox∗

+ = x∗
{+−}+2h. With the explicit expressions

for x∗
+ and x∗

{+−} we obtain

2(cosh(2βh(2)c ))3 + 3(cosh(2βh(2)c ))2 = (cosh(2βJ ))2. (38)

This equation has exactly one real solution for cosh(2βh(2)c ), resulting in

h(2)c = 1

2β
arcosh

(
cosh

(
4

3
βJ

)
− 1

2

)
. (39)

The phase diagram for the transition at h(2)c is shown in figure 7. One clearly sees that there is
a critical line β(J ) such that there is no phase transition possible for any β < β(J ). This line
is given by the condition h(2)c = 0 corresponding to

β(J ) = 3

4J
arcosh

(
3

2

)
= 1

2J
ln(2 +

√
5). (40)

With (39) and (40) we thus have a complete analytical understanding of the occurrence and
the position of the transition at h(2)c .

2.4. Transition of the measure at h(2a)c

We have seen in the last section that the sharp drop of all Dq with negative q at h(2)c can be
explained through the analysis of the properties of the {+−} orbit, which is on the one hand an
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orbit with very weak singularity and on the other hand the last periodic orbit (with decreasing
h) to be affected by th overlap O. To understand the smaller drop at h(2a)c it is therefore
natural to look for periodic orbits with weak singularity which also are affected by the overlap
relatively late. We will now argue that the family of periodic orbits of the form {+−−(+−)n},
n ∈ N, fulfills these conditions and that their change in singularity indeed causes the transition
at h(2a)c . To present the precise argument we need to investigate some properties of this family
of orbits.

For large n most points of the {+−−(+−)n} orbits are close to the points of the {+−}
orbit. Thus, having (19) in mind, these orbits have singularities similar to the singularity of
the {+−} orbit, i.e. weak singularities, provided that no point of the orbits is in the overlap O.
The larger n the larger is the fraction of points of the corresponding orbit which are close to
x∗

{+−} and x∗
{−+}. Therefore, the singularities become weaker with growing n.

Concerning the position of the orbits {+−−(+−)n} we first note that the points zn :=
x∗

{+−−(+−)n} are for each of the orbits {+−−(+−)n} the closest points to the overlap O. As

f{+−−(+−)n}(x
(n)
0 ) → x∗

{+−−(+−)∞} for any choice of initial points x(n)0 ∈ I and n → ∞, we

obtain with x(n)0 := zn = x∗
{+−−(+−)n} that zn → x∗

{+−−(+−)∞} for n → ∞. Furthermore, it is an
easy exercise to check that zn is monotonically growing with n.

Taking these properties together we conclude that each of the periodic orbits of the form
{+−−(+−)n} is affected by the overlap as soon as zn is in O and that the orbits with weaker
singularity (those with large n) are affected by the overlap later than the orbits with somewhat
stronger singularity. Finally, as the zn converge to x∗

{+−−(+−)∞}, there are still countably
infinitely many orbits {+−−(+−)n}, n � N , with some N ∈ N left which are not affected by
the overlap as long as x∗

{+−−(+−)∞} is not inO. As soon as x∗
{+−−(+−)∞} enters the overlapO, all

orbits {+−−(+−)n} are in the overlap and their singularity therefore superseded. The critical
field strength h(2a)c is thus determined by the condition

f−(x∗
+) = x∗

+−−(+−)∞ = f{+−}(x∗
{−+}). (41)

This criterion is in perfect agreement with the numerically obtained positions of the small drop
in the Dq-spectrum for q = −1,−2,−3 (cf figure 8). The transition is also visible in the
f (α)-spectrum. For h → h

(2a)
c + 0 a cusp develops and the spectrum collapses to a smooth

form again at h(2a)c (cf figure 6(b)).
So far we have only addressed the periodic orbits {+−−(+−)n}, neglecting their offshoots.

Each such orbit has countably many offshoots. From these offshoots those originating from
points to the left ofO and containing exclusively additional − as well as those originating from
points to the right of O and only containing additional + are also not affected by the overlap
as long as the corresponding periodic orbit is not. Thus, at h(2a)c countably infinitely many
periodic orbits each with countably many offshoots of the described form vanish at once. This
explains why this transition is visible in the Dq-spectrum in contrast to events of single orbits
(and their offshoots) being affected by the overlap at any value of h.

The fact that the transition is not visible inDq with large negativeq is also easily understood
in this framework. As the singularities of all {+−−(+−)n} orbits are similar to but somewhat
stronger than the singularity of the {+−} orbit, the {+−} orbit and its offshoots dominate Dq

for large negative q and the transition is not visible.
Please note the symmetry of the system, which allows the same reasoning with the

‘opposite’ orbits {−++(−+)n}, resulting in an equivalent result.
Even though the effect is due to the periodic orbits {+−−(+−)n} and their offshoots, the

orbit entering condition (41) is an offshoot of the {+−} orbit, namely {+−−(+−)∞}. This orbit
thus seems to play a similar role as the {+−} orbit for the transition at h(2)c . For illustration we
have generated an approximation of pn and calculated the position of the points of the {+−}



Orbits and phase transitions in the multifractal spectrum 15

h
(2a)
c

0.9

0.9

0.85

0.8

0.8

0.75

0.7

0.7

0.65

0.6

0.55

1 1.1 1.2 1.3 �

Figure 8. h
(2a)
c obtained from the analytical condition (41) (dashed curve) compared with the

location of the small drops inDq (error bars) (cf figure 2). The errors are estimated and mainly due
to the errors in the determination of the location of the drops in the numerically obtainedDq -spectra
(J = 1).

orbit and its offshoots of the form {(+)n(+−)∞} (dotted lines in figure 9) as well as the position
of the points of the {+−−(+−)∞} orbit and its offshoots of the form {(+)n+−−(+−)∞} (dashed
lines in figure 9). It is obvious that there is a bunch of weak singularities in the vicinity of
x∗

{+−−(+−)n} and in the vicinity of the points of the offshoots, which all vanish when decreasing

h below h
(2a)
c (cf figures 9(a) and (b)).

The attentive reader will have noticed that we have argued that the weak singularity of an
orbit which is touched by the overlap O for some h0 but not for h > h0 will be superseded
by the strong singularity of the {+} or the {−} orbit. For smaller h in the generic case the
additionally contributed singularity will beD1 −1 and thus also rather large. It is not excluded
though that two weak singularities are combined resulting in a weak singularity even though
the orbit is in the overlap. A prominent example of this effect is the value of h for which
x∗

{+−−(+−)∞} = x∗
{−++(−+)∞} = 0. At this value of h new deep cuts in the approximated measure

density appear at x∗
{+−−(+−)∞} and its offshoots (cf figure 9(c)). The effect on theDq-spectrum

is negligible though, as this is a rare event only affecting a single orbit and its offshoots at a
given h.

To summarize, the crucial feature for a visible transition in the Dq-spectrum is that a
non-negligible fraction of orbits with weak singularities is affected by the overlap at one sharp
critical value hc resulting in a drop ofDq with negative q. It is not excluded that there are more
transitions of this type which might become observable with further increase in numerical
accuracy in the future. Our arguments hint at the conjecture that these transitions, if existent,
should take place at h > h

(2a)
c .

The formulae given in the last two sections allow us to draw a phase diagram for the phase
transitions in the Dq-spectrum of the invariant measure which have been observed so far (cf
figure 10). It should be emphasized that these ‘phase transitions’ are not phase transitions of
physical quantities such as the (local) magnetization or the Edwards–Anderson parameter.
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Figure 9. Double-logarithmic plot of pn generated from the band structure after n = 21 iterations.
The negative peaks correspond to deep cuts inpn. The dotted lines mark the position of x∗

{(+)k (+−)∞},
i.e. the points of the {+−} orbit and its offshoots, and the dash–dotted lines the positions of
x∗

{(+)k+−−(+−)∞}, i.e. the points of the {+−−(+−)∞} orbit and its offshoots. In (a) for h > h
(2a)
c deep

cuts are visible at all marked positions whereas in (b) for h < h
(2a)
c the deep cuts at x∗

{(+)k+−−(+−)∞}
have vanished. They reappear in (c) at a critical field strength h ≈ 0.5436 as discussed in the text
whereas in (d) for h < h

(2)
c all deep cuts have vanished (β = 1, J = 1).

3. Bounds on the Dq-spectrum

Let in the following µ denote the invariant measure. As mentioned above there are natural
bounds on Dq . They are induced by

µ
q

(x) �
∑
i

µ
q

i (42)

where x is some point in the support of µ and µ(x) is the measure of the box containing x. Let
us now first consider the case q < 0. In this case inequality (42) immediately yields

Dq � q

q − 1
lim
ε→0

ln(µ(x))

ln ε
. (43)

The limit on the right-hand side is the pointwise dimension at x. If we choose x = x∗
+ we can

calculate the pointwise dimension at x for any h, T �= 1, J using (19). This gives the lower
bound

Dq � q

1 − q

ln 2

ln(A′(x∗
+))
. (44)
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Figure 10. Phase diagram for the transitions of the invariant measure derived from the RFIM. The
h
(n)
c are the critical random field strengths defined in the text. The remarkable fact that the curves

of h(2)c and h(3)c as well as the curves of h(2a)c and h(3)c intersect shows that there is a variety of
different scenarios depending on the choice of kT . For example at kT = 1.3, the transition at h(2)c

precedes the one at h(3)c while the transition at h(4)c is non-existent (J = 1).

In the region h > h
(2)
c we also can calculate the pointwise dimension at x∗

{+−}. With x = x∗
{+−}

we obtain the bound

Dq � q

1 − q

ln 2

ln(A′(x∗
{+−}))

. (45)

These lower bounds are shown as solid curves in figure 2.
Whenever we know that the invariant measure scales most weakly at some point x of its

support and we can calculate the pointwise dimension at x, we also can give an upper bound
induced by ∑

i

µ
q

i � Nµ
q

(x). (46)

In this N is the number of boxes and is essentially proportional to 1/ε. In the region h < h
(3)
c

the measure is assumed to scale most weakly at x∗
+ (and x∗

−) such that inserting (46) into (7)
we obtain the upper bound

Dq � 1

1 − q

(
1 +

q ln 2

ln(A′(x∗
+))

)
. (47)

In the region h > h
(2)
c the scaling is assumed to be weakest at x∗

{+−} (and x∗
{−+}), yielding

Dq � 1

1 − q

(
1 +

q ln 2

ln(A′(x∗
{+−}))

)
. (48)

Obviously the upper and lower bounds converge to a common value in both regions asq → −∞
such that we obtain the explicit expressions

D−∞ =




− ln 2

ln(A′(x∗
+))

h < h
(3)
c

− ln 2

ln(A′(x∗
{+−}))

h > h
(2)
c .

(49)
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The expression for the region h < h
(3)
c has already been given in [29] whereas the expression

for the region h > h
(2)
c needs our analysis of the singularity of orbits in section 2.1. These

upper bounds are in general not as good as the lower ones found above and are not shown in
figure 2.

In the case q > 0 all considerations remain valid for the bounds based on (42), which
yields by use of (19) the upper bounds

Dq � q

1 − q

ln 2

ln(A′(x∗
+))

(50)

for any h and the sharper condition

Dq � q

1 − q

ln 2

ln(A′(x∗
{+−}))

(51)

for h > h
(2)
c . These upper bounds (51) are shown as dashed lines in figure 2.

Lower bounds on Dq can be obtained by considering points x at which the scaling is
maximally strong. This is assumed to be true for x∗

+ and x∗
− in the region h > h

(3)
c . Therefore

we obtain

Dq � 1

1 − q

(
1 +

q ln 2

ln(A′(x∗
+))

)
. (52)

These lower bounds are not as good as the upper bounds (51) and are not shown in figure 2.
In the region h > h

(2)
c the lower and upper bounds for Dq converge to a common value for

q → ∞, yielding

D∞ = − ln 2

ln(A′(x∗
+))
. (53)

The expressions (49) and (53) generalize results previously obtained [10] for h > h
(1)
c .

Note that for q < 0 (q > 0) the upper (lower) bounds rest on the assumption of minimal
(maximal) scaling at x∗

+ (x∗
−) and x∗

{+−} (x∗
{−+}) whereas the lower (upper) bounds do not need

any additional assumptions. In figure 2 only the lower (upper) bounds are shown.
The fact that for q � −2 (q � 4) the lower (upper) bounds are more or less identical with

the numerical data (cf figure 2) shows that in these cases the generalized dimensions Dq are
solely determined by the scaling at certain points, i.e. at x∗

+ and x∗
− for h < h

(3)
c and at x∗

{+−} for

h > h
(2)
c . This reinforces our previous argument as to why the small drop in the Dq-spectrum

at h(2a)c is not visible in numerical data for q < −3.

4. Concluding remarks

By generalizing arguments, hitherto mainly applied to fixed points, to orbits we have been able
to calculate the singularity of all periodic orbits not touching the overlap O and the generic
(µ-a.s.) singularity of orbits in the non-overlapping case. We then investigated the effects of
a non-void overlap on the singularity of orbits. While being a relevant result in its own right
the knowledge of the singularity of orbits and their dependence on touching the overlap or not
also provided the explanation for two phase transitions in the multifractal Dq-spectrum of the
invariant measure.

RIFSs with similar properties to the one discussed here also appear in a variety of other
contexts [21–23, 29]. In [29] a similar phase transition in the Dq-spectrum already has been
observed. The explanation of the mechanism causing such transitions does not crucially depend
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Figure 11. Sample situation of first-order bands in the symmetric four-Dirac-mass case in the
vicinity of a transition similar to the one at h(2)c in the text. If, as shown in the figure, H is
large enough, x∗

{23} and x∗
{32} are not included in I1 and I4 respectively. In this case x∗

{23} has the
unique predecessor x∗

{32} and vice versa, exactly like x∗
{−+} and x∗

{+−} in the dichotomous case. The
situation is therefore identical to the situation in the dichotomous case and the transition takes place
at h = h

(2)
c (β = 1, h = 0.7, H = 1.8).

on the special choice of the RIFS we investigated here. Let us briefly discuss some obvious
generalizations.

Dropping the restriction of symmetry of the random field distribution leads to the loss
of various symmetries of the orbit structure, e.g. x∗

+ �= −x∗
− and x∗

{+−} �= −x∗
{−+}, and of the

resulting calculational simplicity. The general orbit structure underlying our explanations of
transitions in the Dq-spectrum however remains. Therefore, the transitions also exist in the
non-symmetric case and can be analysed in the same way as above in the symmetric case. Some
numerical results may be found in [13]. The explicit calculations are far more complicated
though.

Considering more complex random field distributions such as, for example, n

(symmetrically or non-symmetrically distributed) Dirac masses considerably complicates the
system. The mechanisms causing phase transitions in the Dq-spectra are nevertheless still
the same. Let us briefly outline the example of four symmetrically distributed Dirac masses
located at {−H,−h, h,H } as the random field distribution, i.e. the RIFS {f1, f2, f3, f4} =
{A−H,A− h,A + h,A +H } with h < H ∈ R

+.

• For any given β a transition line in the h–H -plane exists between a region with D0 = 1
and D0 < 1, which is easily determined from the overlap conditions of the first-order
bands Ij , j = 1, . . . , 4. These conditions read h � h

(1)
c and f3(x

∗
4 ) � f4(x

∗
1 ), the second

inequality being a condition on H as well as h.
• The transitions depending on the scaling at the boundary of the support of µ∞, i.e. on the

scaling at x∗
1 and x∗

4 , exist in the same way as those at h(3)c and h(4)c above. The transition
conditions are H = h

(3)
c and H = h

(4)
c respectively.

• Even though the orbit structure is more intricate than in the dichotomous case figure 11
shows a situation in which a transition of the type of the one at h(2)c above can take place.
The transition occurs at h = h

(2)
c provided H is large enough for the bands I1 and I2 not

to include x∗
{23} or x∗

{32}, i.e. f1(x
∗
4 ) < x∗

{23} or equivalently f4(x
∗
1 ) > x∗

{32}.

In summary, the types of transition occurring in the Dq-spectrum are the same as in the
dichotomous case and it is possible to draw a diagram in the (β, h,H) parameter space similar
to the simpler diagram in figure 10, which is the h = H slice of this higher-dimensional
diagram.

In the same fashion the analytic tools developed in this paper in principle allow us to
analyse the Dq-spectrum of the distribution of the effective field of the RFIM for any discrete
random field distribution. Moreover, the exact form of the function A is not crucial, such that
the analysis can be performed as soon as the following features are present.



20 T Nowotny et al

• A hyperbolic RIFS {fj }, j = 1, . . . , n which—in dependence on a control parameter
h—has overlapping bands or not.

• The functionsfj are sufficiently smooth, monotonic and have comparably large derivatives
at certain periodic orbits.

• The conditions for the transitions that certain (periodic) orbits touch or do not touch the
overlap can be fulfilled by tuning h.

The generalization to continuous random field distributions is not obvious as the techniques
used above cannot directly be applied to this case. In [3] a numerical survey of the nature of
the distribution function P∞ for various random field distributions can be found. For discrete
random fields a transition between a devil’s staircase corresponding to D0 < 1 and a smooth
function corresponding toD0 = 1 is found as is predicted analytically. For continuous random
field distributions without gaps P∞ always is smooth whereas gaps in the continuous random
field distribution define a scale above which (for certain parameters) P∞ resembles a devil’s
staircase and below which it is always smooth.

The generalization to more general lattices such as the dichotomous symmetric RFIM on
the Bethe lattice (cf [42,43] and references therein) is non-trivial. Transitions corresponding to
those at h(1)c , h(3)c and h(4)c above are present. The exact conditions determining the critical field
strengths are however not obvious and need further careful investigation. The existence and
properties of transitions of the type of those at h(2)c or h(2a)c needs even more careful and detailed
analysis and must be deferred to further work. We stress however that all these transitions in
theDq-spectrum take place deeply within the contracting, paramagnetic regime of the physical
phase diagram of the RFIM on the Bethe lattice.

The bounds on the Dq-spectrum obtained in section 3 are also of a quite general type
and therefore applicable in a variety of contexts. As figure 2 shows, the bounds together
with the explanation of all the transitions discussed give a very good qualitative as well as
quantitative understanding of the Dq-spectrum of the invariant measure of the effective field
in the dichotomous, symmetric 1D RFIM.

The detailed analysis of the invariant measure of the effective field should be viewed as the
preparation of the study of the multifractal properties of the measure of the local magnetization
in the RFIM, which essentially is a convolution of the invariant measure of the effective field
with a distorted version of itself. The transitions in the Dq-spectrum of the invariant measure
of the effective field have direct counterparts in the Dq-spectrum of the measure of the local
magnetization and thus gain a direct physical significance. We will address this subject in
forthcoming work.
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Appendix A. Relations between scaling properties

A.1. Relation between the scaling at x∗
{σ }n and at f −1

{σ }n (x
∗
{σ }n )

In this appendix we show that the assumed scaling relation

lim
ε→0

P∞(x∗
{σ }n + ε

2 )− P∞(x∗
{σ }n − ε

2 )

εα{σ }n+1
=: k (A.1)
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implies that the limit

lim
ε→0

P∞(f −1
{σ }n (x

∗
{σ }n + ε

2 ))− P(f −1
{σ }n (x

∗
{σ }n − ε

2 ))

((f −1
{σ }n )

′(x∗
{σ }n ) ε)

α{σ }n+1
(A.2)

exists and is equal to k. In the following we drop the indices {σ }n and ∞ to improve readability
and denote the expression in (A.2) asQ(ε). Applying the mean-value theorem to f −1 inQ(ε)
and using f −1(x∗) = x∗ yields

Q(ε) = P(x∗ + (f −1)′(x∗ + δ1)
ε
2 )− P(x∗ − (f −1)′(x∗ − δ2)

ε
2 )

((f −1)′(x∗) ε)α+1
(A.3)

with some δ1, δ2 ∈ [0, ε2 ]. Now let (f −1)′min be the minimum of (f −1)′(x∗ + δ1) and
(f −1)′(x∗ − δ2). Because f −1 is strictly monotonically growing we have (f −1)′min > 0.
Using the fact that P is monotonically growing as well we obtain the lower estimate

Q(ε) �
P(x∗ + (f −1)′min

ε
2 )− P(x∗ − (f −1)′min

ε
2 )

((f −1)′(x∗) ε)α+1
(A.4)

= P(x∗ + (f −1)′min
ε
2 )− P(x∗ − (f −1)′min

ε
2 )

((f −1)′minε)
α+1

·
(
(f −1)′minε

(f −1)′(x∗) ε

)α+1

. (A.5)

The quotient of (f −1)′min and (f −1)′(x∗) converges to unity and thus

lim
ε→0

Q(ε) � lim
ε→0

P(x∗ + (f −1)′min
ε
2 )− P(x∗ − (f −1)′min

ε
2 )

((f −1)′minε)
α+1

= k. (A.6)

Using the maximum of (f −1)′(x∗ + δ1) and (f −1)′(x∗ − δ2) instead of the minimum we obtain
in the same fashion the upper estimate

lim
ε→∞Q(ε) � k. (A.7)

Both estimates together give the conjectured result limε→0 Q(ε) = k.

A.2. Relation between α(x) and α(f −1
σ (x))

The Frobenius–Perron equation for the invariant distribution P∞ induces the equality α(x) =
α(f −1

σ (x)) for any x ∈ suppµ which is not in the overlap O.
The proof is straightforward. Let x ∈ suppµ be a point which is not inO and σ ∈ {−,+}

an arbitrary sign. Then, dropping again the index ∞,

α(x) = lim
ε→0

ln(P (x + ε
2 )− P(x − ε

2 ))

ln ε
(A.8)

= lim
ε→0

ln( 1
2P(f

−1
σ (x + ε

2 ))− 1
2P(f

−1
σ (x − ε

2 )))

ln ε
(A.9)

because of the Frobenius–Perron equation. We now use the mean-value theorem for f −1
σ (x+ ε

2 )

and f −1
σ (x − ε

2 ) to obtain

= lim
ε→0

− ln 2

ln ε
+

ln(P (f −1
σ (x) + (f −1

σ )′(x + δ1)
ε
2 )− P(f −1

σ (x)− (f −1
σ )′(x − δ2)

ε
2 ))

ln ε
(A.10)

with some δ1, δ2 ∈ [0, ε2 ]. Using again the notation (f −1
σ )′min for the minimum of (f −1

σ )′(x+δ1)

and (f −1
σ )′(x − δ2) and defining ε′ := (f −1

σ )′min · ε we obtain the inequality

α(x) � lim
ε′→0

ln(P (f −1
σ (x) + ε′

2 )− P(f −1
σ (x)− ε′

2 ))

− ln(f −1
σ )′min + ln ε′ = α(f −1

σ (x)). (A.11)

Using the maximum (f −1
σ )′max of the derivatives instead of the minimum we obtain by the same

token α(x) � α(f −1
σ (x)). Therefore the equality follows.
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Appendix B. Independence of (20) from the choice of x(n)
i

In this appendix we show that

lim
n→∞

1

n

( n∑
i=1

ln φ(x(n)i )−
n∑
i=1

ln φ(x̃(n)i )

)
= 0 (B.1)

for any strictly positive differentiable function φ, any symbolic sequence {σ } and any choice of
x
(n)
i , x̃

(n)
i ∈ I{σ }i , i ∈ {1, . . . , n}, n ∈ N. Let φ, {σ }, x(n)i and x̃(n)i be given and set εn := |I{σ }n |.

Then, using the mean-value theorem,

φ(x̃
(n)
i ) = φ(x

(n)
i ) + φ′(x(n)i + δ(n)i )(x̃

(n)
i − x

(n)
i ) (B.2)

with some δ(n)i , |δ(n)i | < εi . Thus

ln φ(x̃(n)i )− ln φ(x(n)i ) = ln

(
1 +

φ′(x(n)i + δ(n)i )

φ(x
(n)
i )

(x̃
(n)
i − x

(n)
i )

)
. (B.3)

We denote the finite constant max{φ′(x)
φ(x)

: x ∈ I } by Qmax. For sufficiently large i ∈ N the

expression 1 −Qmax |x̃(n)i − x
(n)
i | is positive and we obtain

ln(1 −Qmax |x̃(n)i − x
(n)
i |) � ln φ(x̃(n)i )− ln φ(x(n)i ) � ln(1 +Qmax |x̃(n)i − x

(n)
i |). (B.4)

With |x̃(n)i − x
(n)
i | � εi this yields

ln(1 −Qmax εi) � ln φ(x̃(n)i )− ln φ(x(n)i ) � ln(1 +Qmax εi) (B.5)

implying that the difference ln φ(x̃(n)i ) − ln φ(x(n)i ) converges to zero. A standard argument
then shows that the average also converges to zero, i.e. that (B.1) is true. With φ = A′ this
yields the alleged independence of (20) from the choice of x(n)i .

Note added in proof. The arguments leading to the lower and upper bounds on Dq in section 3 are precise in the
improved formalism of Reidi [44].
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